Abstract
AbstractDiesel exhaust (DE) is a major component of air pollution in urban centers. Controlled human exposure (CHE) experiments are commonly used to investigate the acute effects of DE inhalation specifically and also as a paradigm for investigating responses to traffic-related air pollution (TRAP) more generally. Given the critical role this model plays in our understanding of TRAP’s health effects mechanistically and in support of associated policy and regulation, we review the methodology of CHE to DE (CHE–DE) in detail to distill critical elements so that the results of these studies can be understood in context. From 104 eligible publications, we identified 79 CHE–DE studies and extracted information on DE generation, exposure session characteristics, pollutant and particulate composition of exposures, and participant demographics. Virtually all studies had a crossover design, and most studies involved a single DE exposure per participant. Exposure sessions were typically 1 or 2 h in duration, with participants alternating between exercise and rest. Most CHE–DE targeted a PM concentration of 300 μg/m3. There was a wide range in commonly measured co-pollutants including nitrogen oxides, carbon monoxide, and total organic compounds. Reporting of detailed parameters of aerosol composition, including particle diameter, was inconsistent between studies, and older studies from a given lab were often citedin lieuof repeating measurements for new experiments. There was a male predominance in participants, and over half of studies involved healthy participants only. Other populations studied include those with asthma, atopy, or metabolic syndrome. Standardization in reporting exposure conditions, potentially using current versions of engines with modern emissions control technology, will allow for more valid comparisons between studies of CHE–DE, while recognizing that diesel engines in much of the world remain old and heterogeneous. Inclusion of female participants as well as populations more susceptible to TRAP will broaden the applicability of results from CHE–DE studies.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference147 articles.
1. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–49.
2. Marchal V, Dellink R, Vuuren D Van, Clapp C, Château J, Lanzi E, et al. OECD environmental outlook to 2050 [Internet]. OECD; 2012 [cited 2021 Jun 3]. https://www.oecd-ilibrary.org/environment/oecd-environmental-outlook-to-2050_9789264122246-en.
3. To T, Zhu J, Larsen K, Simatovic J, Feldman L, Ryckman K, et al. Progression from asthma to chronic obstructive pulmonary disease. Is air pollution a risk factor? Am J Respir Crit Care Med. 2016;194:429–38.
4. Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am J Respir Crit Care Med. 2013;187:721–7.
5. Health Effects Institute. Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. 2010.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献