Dose–response relationship of pulmonary disorders by inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats

Author:

Takeda TomokiORCID,Yamano ShotaroORCID,Goto Yuko,Hirai Shigeyuki,Furukawa Yusuke,Kikuchi Yoshinori,Misumi Kyohei,Suzuki Masaaki,Takanobu Kenji,Senoh Hideki,Saito Misae,Kondo Hitomi,Daghlian George,Hong Young-Kwon,Yoshimatsu Yasuhiro,Hirashima Masanori,Kobashi Yoichiro,Okamoto Kenzo,Kishimoto Takumi,Umeda YumiORCID

Abstract

Abstract Background In Japan, six workers handling cross-linked water-soluble acrylic acid polymer (CWAAP) at a chemical plant suffered from lung diseases, including fibrosis, interstitial pneumonia, emphysema, and pneumothorax. We recently demonstrated that inhalation of CWAAP-A, one type of CWAAP, causes pulmonary disorders in rats. It is important to investigate dose–response relationships and recoverability from exposure to CWAAPs for establishing occupational health guidelines, such as setting threshold limit value for CWAAPs in the workplace. Methods Male and female F344 rats were exposed to 0.3, 1, 3, or 10 mg/m3 CWAAP-A for 6 h/day, 5 days/week for 13 weeks using a whole-body inhalation exposure system. At 1 h, 4 weeks, and 13 weeks after the last exposure the rats were euthanized and blood, bronchoalveolar lavage fluid, and all tissues including lungs and mediastinal lymph nodes were collected and subjected to biological and histopathological analyses. In a second experiment, male rats were pre-treated with clodronate liposome or polymorphonuclear leukocyte-neutralizing antibody to deplete macrophages or neutrophils, respectively, and exposed to CWAAP-A for 6 h/day for 2 days. Results CWAAP-A exposure damaged only the alveoli. The lowest observed adverse effect concentration (LOAEC) was 1 mg/m3 and the no observed adverse effect concentration (NOAEC) was 0.3 mg/m3. Rats of both sexes were able to recover from the tissue damage caused by 13 weeks exposure to 1 mg/m3 CWAAP-A. In contrast, tissue damage caused by exposure to 3 and 10 mg/m3 was irreversible due to the development of interstitial lung lesions. There was a gender difference in the recovery from CWAAP-A induced pulmonary disorders, with females recovering less than males. Finally, acute lung effects caused by CWAAP-A were significantly reduced by depletion of alveolar macrophages. Conclusions Pulmonary damage caused by inhalation exposure to CWAAP-A was dose-dependent, specific to the lung and lymph nodes, and acute lung damage was ameliorated by depleting macrophages in the lungs. CWAAP-A had both a LOAEC and a NOAEC, and tissue damage caused by exposure to 1 mg/m3 CWAAP-A was reversible: recovery in female rats was less than for males. These findings indicate that concentration limits for CWAAPs in the workplace can be determined. Graphical Abstract

Funder

grant-in-aid from the Japan Organization of Occupational Health and Safety

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Reference48 articles.

1. Alert notice about incidence of lung diseases among workers handling cross-linked water-soluble acrylic acid polymer in a chemical factory (published on April 29, 2017). [Internet]. Ministry of Health, Labour, and Welfare. Available from: https://www.mhlw.go.jp/stf/houdou/0000163568.html.

2. Suka M, Kido T, Yoshioka W, Hachisuka E, Okoshi H, Yamauchi T, et al. Single intratracheal administration of cross-linked water-soluble acrylic acid polymer causes acute alveolo-interstitial inflammation and the subsequent fibrotic formation possibly via the TGF-β1 pathway in the lung of rats. Toxicology. 2021;448:152647.

3. Nishida C, Tomonaga T, Izumi H, Wang K-Y, Higashi H, Ishidao T, et al. Inflammogenic effect of polyacrylic acid in rat lung following intratracheal instillation. Part Fibre Toxicol. 2022;19:8.

4. Committee report on lung diseases among workers handling cross-linked water-soluble acrylic acid polymer in a chemical factory (published on April 19, 2019). [Internet]. Ministry of Health, Labour, and Welfare. Available from: https://www.mhlw.go.jp/stf/shingi/other-roudou_128880_00004.html.

5. Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, et al. Pathological characteristics of pulmonary toxicity in F344 rats exposed by inhalation to cross-linked water-soluble acrylic acid polymers. Preprint at https://doi.org/10.1101/2021.11.13.468475v1 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3