Abstract
Abstract
Background
Bronchial thermoplasty (BT) is an effective treatment in severe asthma. How to select patients who more likely benefit from BT is an unmet clinical need. Moreover, mechanisms of BT efficacy are still largely unknown. We sought to determine BT efficacy and to identify potential mechanisms of response.
Methods
This retrospective cohort study evaluated clinical outcomes in 27 patients with severe asthma: 13 with T2-high and 14 with T2-low endotype. Expression levels of 20 genes were compared by real-time PCR in bronchial biopsies performed at the third BT session versus baseline. Clinical response was measured based on Asthma Control Questionnaire (ACQ) score < 1.5, asthma exacerbations < 2, oral corticosteroids reduction of at least 50% at 12 months post-BT. Patients were classified as responders when they had at least 2 of 3 outcome measures.
Results
81% of patients were defined as responders. BT induced a reduction in alpha smooth muscle actin (ACTA2) and an increase in CD68, fibroblast activation protein-alpha (FAP), alpha-1 and alpha-2 type I collagen (COL1A1, COL1A2) gene expression in the majority of patients. A higher reduction in ubiquitin carboxy-terminal-hydrolase L1 (PGP9.5) mRNA correlated with a better response based on Asthma Quality of Life Questionnaire (AQLQ). Lower changes in CD68 and FAP mRNAs correlated with a better response based on ACQ. Lower levels of occludin (OCLN), CD68, connective tissue growth factor (CTGF), higher levels of secretory leukocyte protease inhibitor (SLPI) and lower changes in CD68 and CTGF mRNAs were observed in patients who had less than 2 exacerbations post-BT. Lower levels of COL1A2 at baseline were observed in patients who had ACQ < 1.5 at 12 months post-BT.
Conclusions
BT is effective irrespective of the asthma endotypes and seems associated with airway remodelling. Quantification of OCLN, CD68, CTGF, SLPI, COL1A2 mRNAs could be useful to identify patients with better results.
Trial registration: The study protocol was approved by the Local Ethics Committee (Azienda USL-IRCCS of Reggio Emilia—Comitato Etico Area Vasta Nord of Emilia Romagna; protocol number: 2019/0014076) and all the patients provided written informed consent before participating in the study.
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference47 articles.
1. Corren J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med. 2013;15(83):243–9.
2. Galeone C, Scelfo C, Bertolini F, Caminati M, Ruggiero P, Facciolongo N, et al. Precision medicine in targeted therapies for severe asthma: is there any place for “omics” technology? Biomed Res Int. 2018;2018:4617565.
3. Thomson NC. Novel approaches to the management of noneosinophilic asthma. Ther Adv Respir Dis. 2016;10(3):211–34.
4. https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report-2021-V2-WMS.pdf Accessed 28 Dec 2021.
5. Niven RM, Simmonds MR, Cangelosi MJ, Tilden DP, Cottrell S, Shargill NS. Indirect comparison of bronchial thermoplasty versus omalizumab for uncontrolled severe asthma. J Asthma. 2018;55(4):443–51.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献