Author:
Manian Mostafa,Motallebnezhad Morteza,Nedaeinia Reza,Salehi Rasoul,Khani Leila,Ferns Gordon A.,Jazayeri Mir Hadi
Abstract
Abstract
Background
Previous studies have shown that CD134 (OX40) co-stimulation is involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) models and the antigen is expressed within multiple sclerosis lesions in humans. OX40 (CD134) is thought to be a secondary co-stimulatory immune checkpoint molecule that is expressed by T cells. This study aimed to evaluate the mRNA expression of OX40 and its serum levels in the peripheral blood of patients with Multiple Sclerosis (MS) or Neuromyelitis Optica (NMO).
Methods
Patients with MS (n = 60), NMO (n = 20), and 20 healthy subjects were recruited from Sina Hospital, Tehran, Iran. The diagnoses were confirmed by a specialist in clinical neurology. Peripheral venous blood was obtained from all subjects, and mRNA quantification of OX40 was conducted using real-time PCR. Serum samples were also obtained and the concentration of OX40 was determined using an enzyme-linked immunosorbent assay (ELISA).
Results
There was a significant correlation between the mRNA expression and serum levels of OX40 and disability as assessed using the expanded disability status scale (EDSS) in the patients with MS, but not in the patients with NMO. Expression of OX40 mRNA was significantly higher in the peripheral blood of MS patients compared to healthy individuals and NMO patients (*P < 0.05). In addition, serum OX40 concentrations were also significantly higher in patients with MS patients compared with healthy subjects (9.08 ± 2.48 vs. 1.49 ± 0.54 ng/ml; P = 0.041).
Conclusions
It appears that an increased expression of OX40 may be associated with the hyperactivation of T cells in patients with MS, and this may play a role in the pathogenesis of the disease.
Funder
Iran University of Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference42 articles.
1. Lucchinetti C, Brück W, Noseworthy J. Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol. 2001;14(3):259–69.
2. Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic modifications and therapy in multiple sclerosis. Neuromol Med. 2017;19(1):11–23.
3. Javan M-R, Seyfizadeh N, Aslani S, Farhoodi M, Babaloo Z. Molecular analysis of interleukin-25 exons 1 and 2 and its serum levels in Iranian patients with multiple sclerosis. Am J Clin Exp Immunol. 2014;3(2):91.
4. Matthews PM, Roncaroli F, Waldman A, Sormani MP, De Stefano N, Giovannoni G, et al. A practical review of the neuropathology and neuroimaging of multiple sclerosis. Pract Neurol. 2016;16(4):279–87.
5. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199(7):971–9.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献