Predictive modeling of anti-malarial molecules inhibiting apicoplast formation

Author:

Jamal Salma,Periwal Vinita,Scaria Vinod,

Abstract

Abstract Background Malaria is a major healthcare problem worldwide resulting in an estimated 0.65 million deaths every year. It is caused by the members of the parasite genus Plasmodium. The current therapeutic options for malaria are limited to a few classes of molecules, and are fast shrinking due to the emergence of widespread resistance to drugs in the pathogen. The recent availability of high-throughput phenotypic screen datasets for antimalarial activity offers a possibility to create computational models for bioactivity based on chemical descriptors of molecules with potential to accelerate drug discovery for malaria. Results In the present study, we have used high-throughput screen datasets for the discovery of apicoplast inhibitors of the malarial pathogen as assayed from the delayed death response. We employed machine learning approach and developed computational predictive models to predict the biological activity of new antimalarial compounds. The molecules were further evaluated for common substructures using a Maximum Common Substructure (MCS) based approach. Conclusions We created computational models using state-of-the-art machine learning algorithms. The models were evaluated based on multiple statistical criteria. We found Random Forest based approach provides for better accuracy as assessed from ROC curve analysis. We further evaluated the active molecules using a substructure based approach to identify common substructures enriched in the active set. We argue that the computational models generated could be effectively used to screen large molecular datasets to prioritize them for phenotypic screens, drastically reducing cost while improving the hit rate.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference34 articles.

1. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW: The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004, 4: 327-336. 10.1016/S1473-3099(04)01043-6.

2. World Health Organization: 2012, http://www.who.int/mediacentre/factsheets/fs094/en/index.html,

3. World Health Organization: 2012, http://www.who.int/malaria/world_malaria_report_2011/9789241564403_eng.pdf,

4. Newton CR, Taylor TE, Whitten RO: Pathophysiology of fatal falciparum malaria in African children. Am J Trop Med Hyg. 1998, 58: 673-683.

5. World malaria situation 1990: Division of Control of Tropical Diseases. World Health Organization, Geneva. World Health Stat Q. 1992, 45: 257-266.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3