Author:
Xiang Yang,Zhang Cun-Quan,Huang Kun
Abstract
Abstract
Background
Using gene co-expression analysis, researchers were able to predict clusters of genes with consistent functions that are relevant to cancer development and prognosis. We applied a weighted gene co-expression network (WGCN) analysis algorithm on glioblastoma multiforme (GBM) data obtained from the TCGA project and predicted a set of gene co-expression networks which are related to GBM prognosis.
Methods
We modified the Quasi-Clique Merger algorithm (QCM algorithm) into edge-covering Quasi-Clique Merger algorithm (eQCM) for mining weighted sub-network in WGCN. Each sub-network is considered a set of features to separate patients into two groups using K-means algorithm. Survival times of the two groups are compared using log-rank test and Kaplan-Meier curves. Simulations using random sets of genes are carried out to determine the thresholds for log-rank test p-values for network selection. Sub-networks with p-values less than their corresponding thresholds were further merged into clusters based on overlap ratios (>50%). The functions for each cluster are analyzed using gene ontology enrichment analysis.
Results
Using the eQCM algorithm, we identified 8,124 sub-networks in the WGCN, out of which 170 sub-networks show p-values less than their corresponding thresholds. They were then merged into 16 clusters.
Conclusions
We identified 16 gene clusters associated with GBM prognosis using the eQCM algorithm. Our results not only confirmed previous findings including the importance of cell cycle and immune response in GBM, but also suggested important epigenetic events in GBM development and prognosis.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference16 articles.
1. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415 (6871): 530-536. 10.1038/415530a.
2. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ: A gene-expression signature as a predictor of survival in breast cancer. The New England journal of medicine. 2002, 347 (25): 1999-2009. 10.1056/NEJMoa021967.
3. Buyse M, Loi S, van't Veer L, Viale G, Delorenzi M, Glas AM, d'Assignies MS, Bergh J, Lidereau R, Ellis P: Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute. 2006, 98 (17): 1183-1192. 10.1093/jnci/djj329.
4. Zhang J, Huang K, Xiang Y, Jin R: Using Frequent Co-expression Network to Identify Gene Clusters for Breast Cancer Prognosis. Proceedings of the International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing (IJCBS). 2009, Shanghai: IEEE Computer Society, 428-434.
5. Zhang J, Xiang Y, Ding L, Keen-Circle K, Borlawsky TB, Ozer HG, Jin R, Payne P, Huang K: Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia. BMC bioinformatics. 11 (Suppl 9): S5-
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献