Gene selection algorithms for microarray data based on least squares support vector machine
-
Published:2006-02-27
Issue:1
Volume:7
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Tang E Ke,Suganthan PN,Yao Xin
Abstract
Abstract
Background
In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.
Results
A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.
Conclusion
The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference36 articles.
1. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286: 531–537. 2. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, Takao T, Tamesa T, Tangoku A, Tabuchi H, Hamada K, Nakayama H, Ishitsuka H, Miyamoto T, Hirabayashi A, Uchimura S, Hamamoto Y: Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet 2003, 361: 923–929. 3. Nutt CL, Mani DR, Bentensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, Von Deimling A, Pomeroy SL, Golub TR, Louis DN: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research 2003, 63: 1602–1607. 4. Kohavi R, John GH: Wrappers for feature subset selection. Artificial Intelligence 1997, 97: 273–324. 5. Cho SB: Exploring features and classifiers to classify gene expression profiles of acute leukaemia. International Journal of Pattern Recognition and Artificial Intelligence 2002, 16: 831–844.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|