Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation

Author:

Arikuma Takeshi,Yoshikawa Sumi,Azuma Ryuzo,Watanabe Kentaro,Matsumura Kazumi,Konagaya Akihiko

Abstract

Abstract Background In accordance with the increasing amount of information concerning individual differences in drug response and molecular interaction, the role of in silico prediction of drug interaction on the pathway level is becoming more and more important. However, in view of the interferences for the identification of new drug interactions, most conventional information models of a biological pathway would have limitations. As a reflection of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL). Results The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%. Conclusion These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a promising approach for in silico prediction of drug interactions. The following future researches for the in silico prediction of individual differences in the response to the drug and drug interactions after the administration of multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug interaction detection rules, and the numerical simulation models.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference45 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3