Author:
Guo Mao-Zu,Li Jian-Fu,Liu Yang
Abstract
Abstract
Background
Inference of evolutionary trees using the maximum likelihood principle is NP-hard. Therefore, all practical methods rely on heuristics. The topological transformations often used in heuristics are Nearest Neighbor Interchange (NNI), Subtree Prune and Regraft (SPR) and Tree Bisection and Reconnection (TBR). However, these topological transformations often fall easily into local optima, since there are not many trees accessible in one step from any given tree. Another more exhaustive topological transformation is p-Edge Contraction and Refinement (p-ECR). However, due to its high computation complexity, p-ECR has rarely been used in practice.
Results
To make the p-ECR move more efficient, this paper proposes a new method named p-ECRNJ. The main idea of p-ECRNJ is to use neighbor joining (NJ) to refine the unresolved nodes produced in p-ECR.
Conclusion
Experiments with real datasets show that p-ECRNJ can find better trees than the best known maximum likelihood methods so far and can efficiently improve local topological transforms in reasonable time.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference15 articles.
1. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic Trees. Mol Biol Evol 1987, 4: 406–425.
2. Vincent Ranwez, Olivier Gascuel: Improvement of distance-based phylogenetic methods by a local maximum likelihood approach using triplets. Mol Biol Evol 2002, 19: 1952–1963.
3. Rosenberg M, Kumar S: Traditional Phylogenetic Reconstruction Methods Reconstruct Shallow and Deep Evolutionary Relationship equally well. Mol Biol Evol 2001, 18: 1823–1827.
4. Sebastien Roch: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2006, 3: 92–94. 10.1109/TCBB.2006.4
5. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R: fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 1994, 10: 41–48.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献