Context-dependent transcriptional regulations between signal transduction pathways

Author:

Hwang Sohyun,Kim Sangwoo,Shin Heesung,Lee Doheon

Abstract

Abstract Background Cells coordinate their metabolism, proliferation, and cellular communication according to environmental cues through signal transduction. Because signal transduction has a primary role in cellular processes, many experimental techniques and approaches have emerged to discover the molecular components and dynamics that are dependent on cellular contexts. However, omics approaches based on genome-wide expression analysis data comparing one differing condition (e.g. complex disease patients and normal subjects) did not investigate the dynamics and inter-pathway cross-communication that are dependent on cellular contexts. Therefore, we introduce a new computational omics approach for discovering signal transduction pathways regulated by transcription and transcriptional regulations between pathways in signaling networks that are dependent on cellular contexts, especially focusing on a transcription-mediated mechanism of inter-pathway cross-communication. Results Applied to dendritic cells treated with lipopolysaccharide, our analysis well depicted how dendritic cells respond to the treatment through transcriptional regulations between signal transduction pathways in dendritic cell maturation and T cell activation. Conclusions Our new approach helps to understand the underlying biological phenomenon of expression data (e.g. complex diseases such as cancer) by providing a graphical network which shows transcriptional regulations between signal transduction pathways. The software programs are available upon request.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3