HECTAR: A method to predict subcellular targeting in heterokonts

Author:

Gschloessl Bernhard,Guermeur Yann,Cock J Mark

Abstract

Abstract Background The heterokonts are a particularly interesting group of eukaryotic organisms; they include many key species of planktonic and coastal algae and several important pathogens. To understand the biology of these organisms, it is necessary to be able to predict the subcellular localisation of their proteins but this is not straightforward, particularly in photosynthetic heterokonts which possess a complex chloroplast, acquired as the result of a secondary endosymbiosis. This is because the bipartite target peptides that deliver proteins to these chloroplasts can be easily confused with the signal peptides of secreted proteins, causing currently available algorithms to make erroneous predictions. HECTAR, a subcellular targeting prediction method which takes into account the specific properties of heterokont proteins, has been developed to address this problem. Results HECTAR is a statistical prediction method designed to assign proteins to five different categories of subcellular targeting: Signal peptides, type II signal anchors, chloroplast transit peptides, mitochondrion transit peptides and proteins which do not possess any N-terminal target peptide. The recognition rate of HECTAR is 96.3%, with Matthews correlation coefficients ranging from 0.67 to 0.95. The method is based on a hierarchical architecture which implements the divide and conquer approach to identify the different possible target peptides one at a time. At each node of the hierarchy, the most relevant outputs of various existing subcellular prediction methods are combined by a Support Vector Machine. Conclusion The HECTAR method is able to predict the subcellular localisation of heterokont proteins with high accuracy. It also efficiently predicts the subcellular localisation of proteins from cryptophytes, a group that is phylogenetically close to the heterokonts. A variant of HECTAR, called HECTAR SEC , can be used to identify signal peptide and type II signal anchor sequences in proteins from any eukaryotic organism. Both HECTAR and HECTAR SEC are available as a web application at the following address: http://www.sb-roscoff.fr/hectar/.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3