Author:
Abu Arpah,Susan Lim Lee Hong,Sidhu Amandeep Singh,Dhillon Sarinder Kaur
Abstract
Abstract
Background
Digitised monogenean images are usually stored in file system directories in an unstructured manner. In this paper we propose a semantic representation of these images in the form of a Monogenean Haptoral Bar Image (MHBI) ontology, which are annotated with taxonomic classification, diagnostic hard part and image properties. The data we used are basically of the monogenean species found in fish, thus we built a simple Fish ontology to demonstrate how the host (fish) ontology can be linked to the MHBI ontology. This will enable linking of information from the monogenean ontology to the host species found in the fish ontology without changing the underlying schema for either of the ontologies.
Results
In this paper, we utilized the Taxonomic Data Working Group Life Sciences Identifier (TDWG LSID) vocabulary to represent our data and defined a new vocabulary which is specific for annotating monogenean haptoral bar images to develop the MHBI ontology and a merged MHBI-Fish ontologies. These ontologies are successfully evaluated using five criteria which are clarity, coherence, extendibility, ontology commitment and encoding bias.
Conclusions
In this paper, we show that unstructured data can be represented in a structured form using semantics. In the process, we have come up with a new vocabulary for annotating the monogenean images with textual information. The proposed monogenean image ontology will form the basis of a monogenean knowledge base to assist researchers in retrieving information for their analysis.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference21 articles.
1. Biota: The Biodiversity Database Manager. http://viceroy.eeb.uconn.edu/Biota
2. Inside Wood - Search the Inside Wood Database http://insidewood.lib.ncsu.edu
3. MonoDb Homepage. http://www.monodb.org/index.php
4. Goldberg IG, Allan C, Burel JM, Creager D, Falconi A, Hochheiser H, Johnston J, Mellen J, Sorger PK, Swedlow JR: The Open Microscopy Environment (OME) Data Model and XML File: Open Tools for Informatics and Quantitative Analysis in Biological Imaging. Genome Biol 2005, 6: R47. 10.1186/gb-2005-6-5-r47
5. Ahmed WM, Lenz D, Jia L, Robinson JP, Ghafoor A: XML-Based Data Model and Architecture for a Knowledge-Based Grid-Enabled Problem-Solving Environment for High-Throughput Biological Imaging. Information Technology in Biomedicine, IEEE Transactions on 2008,12(2):226-240. 10.1109/TITB.2007.904153
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献