Semantic representation of monogenean haptoral Bar image annotation

Author:

Abu Arpah,Susan Lim Lee Hong,Sidhu Amandeep Singh,Dhillon Sarinder Kaur

Abstract

Abstract Background Digitised monogenean images are usually stored in file system directories in an unstructured manner. In this paper we propose a semantic representation of these images in the form of a Monogenean Haptoral Bar Image (MHBI) ontology, which are annotated with taxonomic classification, diagnostic hard part and image properties. The data we used are basically of the monogenean species found in fish, thus we built a simple Fish ontology to demonstrate how the host (fish) ontology can be linked to the MHBI ontology. This will enable linking of information from the monogenean ontology to the host species found in the fish ontology without changing the underlying schema for either of the ontologies. Results In this paper, we utilized the Taxonomic Data Working Group Life Sciences Identifier (TDWG LSID) vocabulary to represent our data and defined a new vocabulary which is specific for annotating monogenean haptoral bar images to develop the MHBI ontology and a merged MHBI-Fish ontologies. These ontologies are successfully evaluated using five criteria which are clarity, coherence, extendibility, ontology commitment and encoding bias. Conclusions In this paper, we show that unstructured data can be represented in a structured form using semantics. In the process, we have come up with a new vocabulary for annotating the monogenean images with textual information. The proposed monogenean image ontology will form the basis of a monogenean knowledge base to assist researchers in retrieving information for their analysis.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biological Databases;Encyclopedia of Bioinformatics and Computational Biology;2019

2. Fish Ontology framework for taxonomy-based fish recognition;PeerJ;2017-09-15

3. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data;ISPRS International Journal of Geo-Information;2017-06-03

4. Automated plant identification using artificial neural network and support vector machine;Frontiers in Life Science;2017-01

5. A model of a digital biological ecosystem;Systematics and Biodiversity;2013-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3