Oligomeric protein structure networks: insights into protein-protein interactions

Author:

Brinda KV,Vishveshwara Saraswathi

Abstract

Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues) with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb). A few predictions of interface hot spots have also been made based on the results obtained from this analysis, which await experimental verification. Conclusion The construction and analysis of oligomeric protein structure networks and their comparison with monomeric protein structure networks provide insights into protein association. Further, the interface hubs identified using the present method can be effective targets for interface de-stabilizing mutations. We believe this analysis will significantly enhance our knowledge of the principles behind protein association and also aid in protein design.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference60 articles.

1. Janin J, Wodak SJ: Structural basis for macromolecular recognition. In Protein modules and protein-protein interactions. Advances in protein chemistry. Harcourt publishers Ltd; 2002.

2. Russel RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A: A structural perspective on protein-protein interactions. Curr Opin Struct Biol 2004, 14: 313–324. 10.1016/j.sbi.2004.04.006

3. Valencia A, Pazos F: Computational methods for prediction of protein interactions. Curr Opin Struct Biol 2002, 12: 368–372. 10.1016/S0959-440X(02)00333-0

4. Jones S, Thornton JM: Analysis and classification of protein-protein interactions from a structural perspective. In Protein-Protein Recognition. Edited by: Kleanthous C. Oxford University Press, Oxford; 2000.

5. Janin J: Kinetics and thermodynamics of protein-protein interactions. In Protein-Protein Recognition. Edited by: Kleanthous C. Oxford University Press, Oxford; 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3