Author:
Dojer Norbert,Gambin Anna,Mizera Andrzej,Wilczyński Bartek,Tiuryn Jerzy
Abstract
Abstract
Background
A central goal of molecular biology is to understand the regulatory mechanisms of gene transcription and protein synthesis. Because of their solid basis in statistics, allowing to deal with the stochastic aspects of gene expressions and noisy measurements in a natural way, Bayesian networks appear attractive in the field of inferring gene interactions structure from microarray experiments data. However, the basic formalism has some disadvantages, e.g. it is sometimes hard to distinguish between the origin and the target of an interaction. Two kinds of microarray experiments yield data particularly rich in information regarding the direction of interactions: time series and perturbation experiments. In order to correctly handle them, the basic formalism must be modified. For example, dynamic Bayesian networks (DBN) apply to time series microarray data. To our knowledge the DBN technique has not been applied in the context of perturbation experiments.
Results
We extend the framework of dynamic Bayesian networks in order to incorporate perturbations. Moreover, an exact algorithm for inferring an optimal network is proposed and a discretization method specialized for time series data from perturbation experiments is introduced. We apply our procedure to realistic simulations data. The results are compared with those obtained by standard DBN learning techniques. Moreover, the advantages of using exact learning algorithm instead of heuristic methods are analyzed.
Conclusion
We show that the quality of inferred networks dramatically improves when using data from perturbation experiments. We also conclude that the exact algorithm should be used when it is possible, i.e. when considered set of genes is small enough.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference26 articles.
1. de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002, 9: 67–103. 10.1089/10665270252833208
2. Friedman N: Inferring cellular networks using probabilistic graphical models. Science 2004, 303(5659):799–805. 10.1126/science.1094068
3. Akutsu T, Kuhara S, Maruyama O, Miyano S: A System for Identifying Genetic Networks from Gene Expression Patterns Produced by Gene Disruptions and Overexpressions. Genome Inform Ser Workshop Genome Inform 1998, 9: 151–160.
4. Moriyama T, Shinohara A, Takeda M, Maruyama O, Goto T, Miyano S, Kuhara S: A System to Find Genetic Networks Using Weighted Network Model. Genome Inform Ser Workshop Genome Inform 1999, 10: 186–195.
5. Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301(5629):102–105. 10.1126/science.1081900
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献