Assessing affymetrix GeneChip microarray quality

Author:

McCall Matthew N,Murakami Peter N,Lukk Margus,Huber Wolfgang,Irizarry Rafael A

Abstract

Abstract Background Microarray technology has become a widely used tool in the biological sciences. Over the past decade, the number of users has grown exponentially, and with the number of applications and secondary data analyses rapidly increasing, we expect this rate to continue. Various initiatives such as the External RNA Control Consortium (ERCC) and the MicroArray Quality Control (MAQC) project have explored ways to provide standards for the technology. For microarrays to become generally accepted as a reliable technology, statistical methods for assessing quality will be an indispensable component; however, there remains a lack of consensus in both defining and measuring microarray quality. Results We begin by providing a precise definition of microarray quality and reviewing existing Affymetrix GeneChip quality metrics in light of this definition. We show that the best-performing metrics require multiple arrays to be assessed simultaneously. While such multi-array quality metrics are adequate for bench science, as microarrays begin to be used in clinical settings, single-array quality metrics will be indispensable. To this end, we define a single-array version of one of the best multi-array quality metrics and show that this metric performs as well as the best multi-array metrics. We then use this new quality metric to assess the quality of microarry data available via the Gene Expression Omnibus (GEO) using more than 22,000 Affymetrix HGU133a and HGU133plus2 arrays from 809 studies. Conclusions We find that approximately 10 percent of these publicly available arrays are of poor quality. Moreover, the quality of microarray measurements varies greatly from hybridization to hybridization, study to study, and lab to lab, with some experiments producing unusable data. Many of the concepts described here are applicable to other high-throughput technologies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference27 articles.

1. Baker S, Bauer S, Beyer R, Brenton J, Bromley B, Burrill J, Causton H, Conley M, Elespuru R, Fero M, Foy C, Fuscoe J, Gao X, Gerhold D, Gilles P, Goodsaid F, Guo X, Hackett J, Hockett R, Ikonomi P, Irizarry R, Kawasaki E, Kaysser-Kranich T, Kerr K, Kiser G, Koch W, Lee K, Liu C, Liu Z, Lucas A, et al.: The External RNA Controls Consortium: a progress report. Nature Methods 2005, 2: 731–734. 10.1038/nmeth1005-731

2. Consortium M, Shi L, Reid L, Jones W, Shippy R, Warrington J, Baker S, Collins P, de Longueville F, Kawasaki E, Lee K, Luo Y, Sun Y, Willey J, Setterquist R, Fischer G, Tong W, Dragan Y, Dix D, Frueh F, Goodsaid F, Herman D, Jensen R, Johnson C, Lobenhofer E, Puri R, Schrf U, Thierry-Mieg J, Wang C, Wilson M, et al.: The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nature Biotechnology 2006, 24: 1151–1161. 10.1038/nbt1239

3. Shi L, Campbell G, Jones W, Campagne F, Wen Z, Walker S, Su Z, Chu T, Goodsaid F, Pusztai L, Shaughnessy JJ, Oberthuer A, Thomas R, Paules R, Fielden M, Barlogie B, Chen W, Du P, Fischer M, Furlanello C, Gallas B, Ge X, Megherbi D, Symmans W, Wang M, Zhang J, Bitter H, Brors B, Bushel P, Bylesjo M, et al.: The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology 2010, 28(8):827. 10.1038/nbt.1665

4. American Society of Quality[http://asq.org/glossary/index.html]

5. Zilliox M, Irizarry R: A gene expression bar code for microarray data. Nature Methods 2007, 4: 911–913. 10.1038/nmeth1102

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3