Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (E ncyclopedia of H epatocellular C arcinoma genes O nline)
-
Published:2007-02-27
Issue:1
Volume:8
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Hsu Chun-Nan,Lai Jin-Mei,Liu Chia-Hung,Tseng Huei-Hun,Lin Chih-Yun,Lin Kuan-Ting,Yeh Hsu-Hua,Sung Ting-Yi,Hsu Wen-Lian,Su Li-Jen,Lee Sheng-An,Chen Chang-Han,Lee Gen-Cher,Lee DT,Shiue Yow-Ling,Yeh Chang-Wei,Chang Chao-Hui,Kao Cheng-Yan,Huang Chi-Ying F
Abstract
Abstract
Background
The significant advances in microarray and proteomics analyses have resulted in an exponential increase in potential new targets and have promised to shed light on the identification of disease markers and cellular pathways. We aim to collect and decipher the HCC-related genes at the systems level.
Results
Here, we build an integrative platform, the E ncyclopedia of H epatocellular C arcinoma genes O nline, dubbed EHCO http://ehco.iis.sinica.edu.tw, to systematically collect, organize and compare the pileup of unsorted HCC-related studies by using natural language processing and softbots. Among the eight gene set collections, ranging across PubMed, SAGE, microarray, and proteomics data, there are 2,906 genes in total; however, more than 77% genes are only included once, suggesting that tremendous efforts need to be exerted to characterize the relationship between HCC and these genes. Of these HCC inventories, protein binding represents the largest proportion (~25%) from Gene Ontology analysis. In fact, many differentially expressed gene sets in EHCO could form interaction networks (e.g. HBV-associated HCC network) by using available human protein-protein interaction datasets. To further highlight the potential new targets in the inferred network from EHCO, we combine comparative genomics and interactomics approaches to analyze 120 evolutionary conserved and overexpressed genes in HCC. 47 out of 120 queries can form a highly interactive network with 18 queries serving as hubs.
Conclusion
This architectural map may represent the first step toward the attempt to decipher the hepatocarcinogenesis at the systems level. Targeting hubs and/or disruption of the network formation might reveal novel strategy for HCC treatment.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference52 articles.
1. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, et al.: Gene expression patterns in human liver cancers. Mol Biol Cell 2002, 13(6):1929–1939. 10.1091/mbc.02-02-0023. 2. Neo SY, Leow CK, Vega VB, Long PM, Islam AF, Lai PB, Liu ET, Ren EC: Identification of discriminators of hepatoma by gene expression profiling using a minimal dataset approach. Hepatology 2004, 39(4):944–953. 10.1002/hep.20105 3. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, Thorgeirsson SS: Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 2004, 36(12):1306–1311. 10.1038/ng1481 4. Kim JW, Ye Q, Forgues M, Chen Y, Budhu A, Sime J, Hofseth LJ, Kaul R, Wang XW: Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology 2004, 39(2):518–527. 10.1002/hep.20053 5. Goldenberg D, Ayesh S, Schneider T, Pappo O, Jurim O, Eid A, Fellig Y, Dadon T, Ariel I, de Groot N, et al.: Analysis of differentially expressed genes in hepatocellular carcinoma using cDNA arrays. Mol Carcinog 2002, 33(2):113–124. 10.1002/mc.10027
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|