Author:
Cui Xiaoqi,Wang Tong,Chen Huann-Sheng,Busov Victor,Wei Hairong
Abstract
Abstract
Background
Identification of transcription factors (TFs) involved in a biological process is the first step towards a better understanding of the underlying regulatory mechanisms. However, due to the involvement of a large number of genes and complicated interactions in a gene regulatory network (GRN), identification of the TFs involved in a biology process remains to be very challenging. In reality, the recognition of TFs for a given a biological process can be further complicated by the fact that most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation except for small conserved domains. This poses a significant challenge for identification of the exact TFs involved or ranking the importance of a set of TFs to a process of interest. Therefore, new methods for recognizing novel TFs are desperately needed. Although a plethora of methods have been developed to infer regulatory genes using microarray data, it is still rare to find the methods that use existing knowledge base in particular the validated genes known to be involved in a process to bait/guide discovery of novel TFs. Such methods can replace the sometimes-arbitrary process of selection of candidate genes for experimental validation and significantly advance our knowledge and understanding of the regulation of a process.
Results
We developed an automated software package called TF-finder for recognizing TFs involved in a biological process using microarray data and existing knowledge base. TF-finder contains two components, adaptive sparse canonical correlation analysis (ASCCA) and enrichment test, for TF recognition. ASCCA uses positive target genes to bait TFS from gene expression data while enrichment test examines the presence of positive TFs in the outcomes from ASCCA. Using microarray data from salt and water stress experiments, we showed TF-finder is very efficient in recognizing many important TFs involved in salt and drought tolerance as evidenced by the rediscovery of those TFs that have been experimentally validated. The efficiency of TF-finder in recognizing novel TFs was further confirmed by a thorough comparison with a method called Intersection of Coexpression (ICE).
Conclusions
TF-finder can be successfully used to infer novel TFs involved a biological process of interest using publicly available gene expression data and known positive genes from existing knowledge bases. The package for TF-finder includes an R script for ASCCA, a Perl controller, and several Perl scripts for parsing intermediate outputs. The package is available upon request (hairong@mtu.edu). The R code for standalone ASCCA is also available.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献