A comparison study on algorithms of detecting long forms for short forms in biomedical text

Author:

Torii Manabu,Hu Zhang-zhi,Song Min,Wu Cathy H,Liu Hongfang

Abstract

Abstract Motivation With more and more research dedicated to literature mining in the biomedical domain, more and more systems are available for people to choose from when building literature mining applications. In this study, we focus on one specific kind of literature mining task, i.e., detecting definitions of acronyms, abbreviations, and symbols in biomedical text. We denote acronyms, abbreviations, and symbols as short forms (SFs) and their corresponding definitions as long forms (LFs). The study was designed to answer the following questions; i) how well a system performs in detecting LFs from novel text, ii) what the coverage is for various terminological knowledge bases in including SFs as synonyms of their LFs, and iii) how to combine results from various SF knowledge bases. Method We evaluated the following three publicly available detection systems in detecting LFs for SFs: i) a handcrafted pattern/rule based system by Ao and Takagi, ALICE, ii) a machine learning system by Chang et al., and iii) a simple alignment-based program by Schwartz and Hearst. In addition, we investigated the conceptual coverage of two terminological knowledge bases: i) the UMLS (the Unified Medical Language System), and ii) the BioThesaurus (a thesaurus of names for all UniProt protein records). We also implemented a web interface that provides a virtual integration of various SF knowledge bases. Results We found that detection systems agree with each other on most cases, and the existing terminological knowledge bases have a good coverage of synonymous relationship for frequently defined LFs. The web interface allows people to detect SF definitions from text and to search several SF knowledge bases. Availability The web site is http://gauss.dbb.georgetown.edu/liblab/SFThesaurus.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a Repository for Inferring the Meaning of Abbreviations Used in Clinical Studies;Journal of Computers;2017

2. Semantically-Enabled Context-Aware Abbreviations Expansion in the Clinical Domain;Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology - ICBBT '17;2017

3. A Survey of Bioinformatics Database and Software Usage through Mining the Literature;PLOS ONE;2016-06-22

4. Identifying Abbreviations in Biological Literature Based on Reverse Text Alignment;Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation;2015-10-13

5. Ambiguity and variability of database and software names in bioinformatics;Journal of Biomedical Semantics;2015-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3