Author:
Fan Jung-Wei,Xu Hua,Friedman Carol
Abstract
Abstract
Background
Biomedical ontologies are critical for integration of data from diverse sources and for use by knowledge-based biomedical applications, especially natural language processing as well as associated mining and reasoning systems. The effectiveness of these systems is heavily dependent on the quality of the ontological terms and their classifications. To assist in developing and maintaining the ontologies objectively, we propose automatic approaches to classify and/or validate their semantic categories. In previous work, we developed an approach using contextual syntactic features obtained from a large domain corpus to reclassify and validate concepts of the Unified Medical Language System (UMLS), a comprehensive resource of biomedical terminology. In this paper, we introduce another classification approach based on words of the concept strings and compare it to the contextual syntactic approach.
Results
The string-based approach achieved an error rate of 0.143, with a mean reciprocal rank of 0.907. The context-based and string-based approaches were found to be complementary, and the error rate was reduced further by applying a linear combination of the two classifiers. The advantage of combining the two approaches was especially manifested on test data with sufficient contextual features, achieving the lowest error rate of 0.055 and a mean reciprocal rank of 0.969.
Conclusion
The lexical features provide another semantic dimension in addition to syntactic contextual features that support the classification of ontological concepts. The classification errors of each dimension can be further reduced through appropriate combination of the complementary classifiers.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献