Author:
Yuan Joshua S,Reed Ann,Chen Feng,Stewart C Neal
Abstract
Abstract
Background
Even though real-time PCR has been broadly applied in biomedical sciences, data processing procedures for the analysis of quantitative real-time PCR are still lacking; specifically in the realm of appropriate statistical treatment. Confidence interval and statistical significance considerations are not explicit in many of the current data analysis approaches. Based on the standard curve method and other useful data analysis methods, we present and compare four statistical approaches and models for the analysis of real-time PCR data.
Results
In the first approach, a multiple regression analysis model was developed to derive ΔΔCt from estimation of interaction of gene and treatment effects. In the second approach, an ANCOVA (analysis of covariance) model was proposed, and the ΔΔCt can be derived from analysis of effects of variables. The other two models involve calculation ΔCt followed by a two group t- test and non-parametric analogous Wilcoxon test. SAS programs were developed for all four models and data output for analysis of a sample set are presented. In addition, a data quality control model was developed and implemented using SAS.
Conclusion
Practical statistical solutions with SAS programs were developed for real-time PCR data and a sample dataset was analyzed with the SAS programs. The analysis using the various models and programs yielded similar results. Data quality control and analysis procedures presented here provide statistical elements for the estimation of the relative expression of genes using real-time PCR.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
1671 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献