A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time

Author:

Xu Hua,Yang Lanhao,Freitas Michael A

Abstract

Abstract Background Rejection of false positive peptide matches in database searches of shotgun proteomic experimental data is highly desirable. Several methods have been developed to use the peptide retention time as to refine and improve peptide identifications from database search algorithms. This report describes the implementation of an automated approach to reduce false positives and validate peptide matches. Results A robust linear regression based algorithm was developed to automate the evaluation of peptide identifications obtained from shotgun proteomic experiments. The algorithm scores peptides based on their predicted and observed reversed-phase liquid chromatography retention times. The robust algorithm does not require internal or external peptide standards to train or calibrate the linear regression model used for peptide retention time prediction. The algorithm is generic and can be incorporated into any database search program to perform automated evaluation of the candidate peptide matches based on their retention times. It provides a statistical score for each peptide match based on its retention time. Conclusion Analysis of peptide matches where the retention time score was included resulted in a significant reduction of false positive matches with little effect on the number of true positives. Overall higher sensitivities and specificities were achieved for database searches carried out with MassMatrix, Mascot and X!Tandem after implementation of the retention time based score algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3