The BioAssay network and its implications to future therapeutic discovery

Author:

Zhang Jintao,Lushington Gerald H,Huan Jun

Abstract

Abstract Background Despite intense investment growth and technology development, there is an observed bottleneck in drug discovery and development over the past decade. NIH started the Molecular Libraries Initiative (MLI) in 2003 to enlarge the pool for potential drug targets, especially from the “undruggable” part of human genome, and potential drug candidates from much broader types of drug-like small molecules. All results are being made publicly available in a web portal called PubChem. Results In this paper we construct a network from bioassay data in PubChem, apply network biology concepts to characterize this bioassay network, integrate information from multiple biological databases (e.g. DrugBank, OMIM, and UniHI), and systematically analyze the potential of bioassay targets being new drug targets in the context of complex biological networks. We propose a model to quantitatively prioritize this druggability of bioassay targets, and literature evidence was found to confirm our prioritization of bioassay targets at a roughly 70% accuracy. Conclusions Our analysis provide some measures of the value of the MLI data as a resource for both basic chemical biology research and future therapeutic discovery.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing free reference extraction pipelines;International Journal on Digital Libraries;2024-06-20

2. Genome Rearrangement Analysis;Methods in Molecular Biology;2024

3. DiMo: discovery of microRNA motifs using deep learning and motif embedding;Briefings in Bioinformatics;2023-05

4. Diagnosis of Parkinson's disease genes using LSTM and MLP-based multi-feature extraction methods;International Journal of Data Mining and Bioinformatics;2023

5. Machine learning Ensemble for the Parkinson’s disease using protein sequences;Multimedia Tools and Applications;2022-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3