Using affinity propagation for identifying subspecies among clonal organisms: lessons from M. tuberculosis

Author:

Borile Claudio,Labarre Mathieu,Franz Silvio,Sola Christophe,Refrégier Guislaine

Abstract

Abstract Background Classification and naming is a key step in the analysis, understanding and adequate management of living organisms. However, where to set limits between groups can be puzzling especially in clonal organisms. Within the Mycobacterium tuberculosis complex (MTC), the etiological agent of tuberculosis (TB), experts have first identified several groups according to their pattern at repetitive sequences, especially at the CRISPR locus (spoligotyping), and to their epidemiological relevance. Most groups such as "Beijing" found good support when tested with other loci. However, other groups such as T family and T1 subfamily (belonging to the "Euro-American" lineage) correspond to non-monophyletic groups and still need to be refined. Here, we propose to use a method called Affinity Propagation that has been successfully used in image categorization to identify relevant patterns at the CRISPR locus in MTC. Results To adequately infer the relative divergence time between strains, we used a distance method inspired by the recent evolutionary model by Reyes et al. We first confirm that this method performs better than the Jaccard index commonly used to compare spoligotype patterns. Second, we document the support of each spoligotype family among the previous classification using affinity propagation on the international spoligotyping database SpolDB4. This allowed us to propose a consensus assignation for all SpolDB4 spoligotypes. Third, we propose new signatures to subclassify the T family. Conclusion Altogether, this study shows how the new clustering algorithm Affinity Propagation can help building or refining clonal organims classifications. It also describes well-supported families and subfamilies among M. tuberculosis complex, especially inside the modern "Euro-American" lineage.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3