Author:
Liang Lily R,Lu Shiyong,Wang Xuena,Lu Yi,Mandal Vinay,Patacsil Dorrelyn,Kumar Deepak
Abstract
Abstract
Background
Microarray techniques have revolutionized genomic research by making it possible to monitor the expression of thousands of genes in parallel. As the amount of microarray data being produced is increasing at an exponential rate, there is a great demand for efficient and effective expression data analysis tools. Comparison of gene expression profiles of patients against those of normal counterpart people will enhance our understanding of a disease and identify leads for therapeutic intervention.
Results
In this paper, we propose an innovative approach, fuzzy membership test (FM-test), based on fuzzy set theory to identify disease associated genes from microarray gene expression profiles. A new concept of FM d-value is defined to quantify the divergence of two sets of values. We further analyze the asymptotic property of FM-test, and then establish the relationship between FM d-value and p-value. We applied FM-test to a diabetes expression dataset and a lung cancer expression dataset, respectively. Within the 10 significant genes identified in diabetes dataset, six of them have been confirmed to be associated with diabetes in the literature and one has been suggested by other researchers. Within the 10 significantly overexpressed genes identified in lung cancer data, most (eight) of them have been confirmed by the literatures which are related to the lung cancer.
Conclusion
Our experiments on synthetic datasets show that FM-test is effective and robust. The results in diabetes and lung cancer datasets validated the effectiveness of FM-test. FM-test is implemented as a Web-based application and is available for free at http://database.cs.wayne.edu/bioinformatics.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference28 articles.
1. Rome S, Clement K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS, Riou JP, Laville M, Vidal H: Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem 2003, 278(20):18063–18068. 10.1074/jbc.M300293200
2. Shalev A, Pise-Masison CA, Radonovich M, Hoffmann SC, Hirshberg B, Brady JN, Harlan DM: Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFbeta signaling pathway. Endocrinology 2002, 143(9):3695–3698. 10.1210/en.2002-220564
3. Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS: Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 2002, 51(6):1913–1920.
4. Eckenrode SE, Ruan QG, Collins CD, Yang P, McIndoe RA, Muir A, She JX: Molecular pathways altered by insulin b9–23 immunization. Ann N Y Acad Sci 2004, 1037: 175–185. 10.1196/annals.1337.029
5. Voisine P, Ruel M, Khan TA, Bianchi C, Xu SH, Kohane I, Libermann TA, Otu H, Saltiel AR, Sellke FW: Differences in gene expression profiles of diabetic and nondiabetic patients undergoing cardiopulmonary bypass and cardioplegic arrest. Circulation 2004, 110(11 Suppl 1):II280–286.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献