Protein protein interactions, evolutionary rate, abundance and age

Author:

Saeed Ramazan,Deane Charlotte M

Abstract

Abstract Background Does a relationship exist between a protein's evolutionary rate and its number of interactions? This relationship has been put forward many times, based on a biological premise that a highly interacting protein will be more restricted in its sequence changes. However, to date several studies have voiced conflicting views on the presence or absence of such a relationship. Results Here we perform a large scale study over multiple data sets in order to demonstrate that the major reason for conflict between previous studies is the use of different but overlapping datasets. We show that lack of correlation, between evolutionary rate and number of interactions in a data set is related to the error rate. We also demonstrate that the correlation is not an artifact of the underlying distributions of evolutionary distance and interactions and is therefore likely to be biologically relevant. Further to this, we consider the claim that the dependence is due to gene expression levels and find some supporting evidence. A strong and positive correlation between the number of interactions and the age of a protein is also observed and we show this relationship is independent of expression levels. Conclusion A correlation between number of interactions and evolutionary rate is observed but is dependent on the accuracy of the dataset being used. However it appears that the number of interactions a protein participates in depends more on the age of the protein than the rate at which it changes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference44 articles.

1. Ensemble[ftp://ftp.ensembl.org/pub/current_mus_musculus/data/fasta/pep]

2. Genome FTP[ftp://genome-ftp.Stanford.edu/pub/yeast/data_download/sequence/]

3. Dickerson R: The structures of cytochrome c and the rates of molecular evolution. J Mol evo 1971.

4. Ingram V: Gene evolution and the haemoglobins. Nature 1961.

5. Wilson A, Carlson S, White T: Biochemical evolution. Ann Rev Biochem 1977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3