Knowledge-based analysis of proteomics data

Author:

Bessarabova Marina,Ishkin Alexander,JeBailey Lellean,Nikolskaya Tatiana,Nikolsky Yuri

Abstract

Abstract As it is the case with any OMICs technology, the value of proteomics data is defined by the degree of its functional interpretation in the context of phenotype. Functional analysis of proteomics profiles is inherently complex, as each of hundreds of detected proteins can belong to dozens of pathways, be connected in different context-specific groups by protein interactions and regulated by a variety of one-step and remote regulators. Knowledge-based approach deals with this complexity by creating a structured database of protein interactions, pathways and protein-disease associations from experimental literature and a set of statistical tools to compare the proteomics profiles with this rich source of accumulated knowledge. Here we describe the main methods of ontology enrichment, interactome topology and network analysis applied on a comprehensive, manually curated and semantically consistent knowledge source MetaBase and demonstrate several case studies in different disease areas.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference22 articles.

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3