Author:
Hilterbrand Adam,Saelens Joseph,Putonti Catherine
Abstract
Abstract
Background
In many genomes, a clear preference in the usage of particular codons exists. The mechanisms that induce codon biases remain an open question; studies have attributed codon usage to translational selection, mutational bias and drift. Furthermore, correlations between codon usage within host genomes and their viral pathogens have been observed for a myriad of host-virus systems. As such, numerous studies have investigated codon usage and codon bias in an effort to better understand how species evolve. Numerous metrics have been developed to identify biases in codon usage. In addition, a few data repositories of codon bias data are available, differing in the metrics reported as well as the number and taxonomy of strains examined.
Description
We have created a new web resource called the Codon Bias Database (CBDB) which provides information regarding the codon bias within the set of highly expressed genes for 300+ bacterial genomes. CBDB was developed to provide a resource for researchers investigating codon bias in bacteria, facilitating comparisons between strains and species. Furthermore, the site was created to serve those studying adaptation in phage; the genera selected for this first release of CBDB all have sequenced, annotated bacteriophages. The annotations and sequences for the highly expressed gene set are available for each strain in addition to the strain’s codon bias measurements.
Conclusions
Comparing species and strains provides a comprehensive look at how codon usage has been shaped over evolutionary time and can elucidate the putative mechanisms behind it. The Codon Bias Database provides a centralized repository of look-up tables and codon usage bias measures for a wide variety of genera, species and strains. Through our analysis of the variation in codon usage within the strains presently available, we find that most members of a genus have a codon composition most similar to other members of its genus, although not necessarily other members of its species.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献