ProtNet: a tool for stochastic simulations of protein interaction networks dynamics

Author:

Bernaschi Massimo,Castiglione Filippo,Ferranti Alessandra,Gavrila Caius,Tinti Michele,Cesareni Gianni

Abstract

Abstract Background Protein interactions support cell organization and mediate its response to any specific stimulus. Recent technological advances have produced large data-sets that aim at describing the cell interactome. These data are usually presented as graphs where proteins (nodes) are linked by edges to their experimentally determined partners. This representation reveals that protein-protein interaction (PPI) networks, like other kinds of complex networks, are not randomly organized and display properties that are typical of "hierarchical" networks, combining modularity and local clustering to scale free topology. However informative, this representation is static and provides no clue about the dynamic nature of protein interactions inside the cell. Results To fill this methodological gap, we designed and implemented a computer model that captures the discrete and stochastic nature of protein interactions. In ProtNet, our simplified model, the intracellular space is mapped onto either a two-dimensional or a three-dimensional lattice with each lattice site having a linear size (5 nm) comparable to the diameter of an average globular protein. The protein filled lattice has an occupancy (e.g. 20%) compatible with the estimated crowding of proteins in the cell cytoplasm. Proteins or protein complexes are free to translate and rotate on the lattice that represents a sort of naïve unstructured cell (devoid of compartments). At each time step, molecular entities (proteins or complexes) that happen to be in neighboring cells may interact and form larger complexes or dissociate depending on the interaction rules defined in an experimental protein interaction network. This whole procedure can be seen as a sort of "discrete molecular dynamics" applied to interacting proteins in a cell. We have tested our model by performing different simulations using as interaction rules those derived from an experimental interactome of Saccharomyces cerevisiae (1378 nodes, 2491 edges) and we have compared the dynamics of complex formation in a two and a three dimensional lattice model. Conclusion ProtNet is a cellular automaton model, where each protein molecule or complex is explicitly represented and where simple interaction rules are applied to populations of discrete particles. This tool can be used to simulate the dynamics of protein interactions in the cell.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3