An SVM-based system for predicting protein subnuclear localizations

Author:

Lei Zhengdeng,Dai Yang

Abstract

Abstract Background The large gap between the number of protein sequences in databases and the number of functionally characterized proteins calls for the development of a fast computational tool for the prediction of subnuclear and subcellular localizations generally applicable to protein sequences. The information on localization may reveal the molecular function of novel proteins, in addition to providing insight on the biological pathways in which they function. The bulk of past work has been focused on protein subcellular localizations. Furthermore, no specific tool has been dedicated to prediction at the subnuclear level, despite its high importance. In order to design a suitable predictive system, the extraction of subtle sequence signals that can discriminate among proteins with different subnuclear localizations is the key. Results New kernel functions used in a support vector machine (SVM) learning model are introduced for the measurement of sequence similarity. The k-peptide vectors are first mapped by a matrix of high-scored pairs of k-peptides which are measured by BLOSUM62 scores. The kernels, measuring the similarity for sequences, are then defined on the mapped vectors. By combining these new encoding methods, a multi-class classification system for the prediction of protein subnuclear localizations is established for the first time. The performance of the system is evaluated with a set of proteins collected in the Nuclear Protein Database (NPD). The overall accuracy of prediction for 6 localizations is about 50% (vs. random prediction 16.7%) for single localization proteins in the leave-one-out cross-validation; and 65% for an independent set of multi-localization proteins. This integrated system can be accessed at http://array.bioengr.uic.edu/subnuclear.htm. Conclusion The integrated system benefits from the combination of predictions from several SVMs based on selected encoding methods. Finally, the predictive power of the system is expected to improve as more proteins with known subnuclear localizations become available.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Anticancer Drug Resistance Mediated by Mutations;Pharmaceuticals;2022-01-24

2. Protein Subcellular Localization Based on Evolutionary Information and Segmented Distribution;Mathematical Problems in Engineering;2021-12-31

3. The structure-based cancer-related single amino acid variation prediction;Scientific Reports;2021-06-30

4. Prediction of protein subcellular localization using machine learning with novel use of generic feature set;2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE);2020-12-26

5. SVMTriP: A Method to Predict B-Cell Linear Antigenic Epitopes;Methods in Molecular Biology;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3