Automated group assignment in large phylogenetic trees using GRUNT: GRouping, Ungrouping, Naming Tool

Author:

Dalevi Daniel,DeSantis Todd Z,Fredslund Jakob,Andersen Gary L,Markowitz Victor M,Hugenholtz Philip

Abstract

Abstract Background Accurate taxonomy is best maintained if species are arranged as hierarchical groups in phylogenetic trees. This is especially important as trees grow larger as a consequence of a rapidly expanding sequence database. Hierarchical group names are typically manually assigned in trees, an approach that becomes unfeasible for very large topologies. Results We have developed an automated iterative procedure for delineating stable (monophyletic) hierarchical groups to large (or small) trees and naming those groups according to a set of sequentially applied rules. In addition, we have created an associated ungrouping tool for removing existing groups that do not meet user-defined criteria (such as monophyly). The procedure is implemented in a program called GRUNT (GRouping, Ungrouping, Naming Tool) and has been applied to the current release of the Greengenes (Hugenholtz) 16S rRNA gene taxonomy comprising more than 130,000 taxa. Conclusion GRUNT will facilitate researchers requiring comprehensive hierarchical grouping of large tree topologies in, for example, database curation, microarray design and pangenome assignments. The application is available at the greengenes website [1].

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3