Selective prediction of interaction sites in protein structures with THEMATICS

Author:

Wei Ying,Ko Jaeju,Murga Leonel F,Ondrechen Mary Jo

Abstract

Abstract Background Methods are now available for the prediction of interaction sites in protein 3D structures. While many of these methods report high success rates for site prediction, often these predictions are not very selective and have low precision. Precision in site prediction is addressed using Theoretical Microscopic Titration Curves (THEMATICS), a simple computational method for the identification of active sites in enzymes. Recall and precision are measured and compared with other methods for the prediction of catalytic sites. Results Using a test set of 169 enzymes from the original Catalytic Residue Dataset (CatRes) it is shown that THEMATICS can deliver precise, localised site predictions. Furthermore, adjustment of the cut-off criteria can improve the recall rates for catalytic residues with only a small sacrifice in precision. Recall rates for CatRes/CSA annotated catalytic residues are 41.1%, 50.4%, and 54.2% for Z score cut-off values of 1.00, 0.99, and 0.98, respectively. The corresponding precision rates are 19.4%, 17.9%, and 16.4%. The success rate for catalytic sites is higher, with correct or partially correct predictions for 77.5%, 85.8%, and 88.2% of the enzymes in the test set, corresponding to the same respective Z score cut-offs, if only the CatRes annotations are used as the reference set. Incorporation of additional literature annotations into the reference set gives total success rates of 89.9%, 92.9%, and 94.1%, again for corresponding cut-off values of 1.00, 0.99, and 0.98. False positive rates for a 75-protein test set are 1.95%, 2.60%, and 3.12% for Z score cut-offs of 1.00, 0.99, and 0.98, respectively. Conclusion With a preferred cut-off value of 0.99, THEMATICS achieves a high success rate of interaction site prediction, about 86% correct or partially correct using CatRes/CSA annotations only and about 93% with an expanded reference set. Success rates for catalytic residue prediction are similar to those of other structure-based methods, but with substantially better precision and lower false positive rates. THEMATICS performs well across the spectrum of E.C. classes. The method requires only the structure of the query protein as input. THEMATICS predictions may be obtained via the web from structures in PDB format at: http://pfweb.chem.neu.edu/thematics/submit.html

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3