Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

Author:

Chen Bo,Chen Minhua,Paisley John,Zaas Aimee,Woods Christopher,Ginsburg Geoffrey S,Hero Alfred,Lucas Joseph,Dunson David,Carin Lawrence

Abstract

Abstract Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference28 articles.

1. West M: "Bayesian factor regression models in the "large p, small n" paradigm,". In Bayesian Statistics 7. Edited by: Bernardo JM, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M. Oxford University Press; 2003:723–732.

2. Tibshirani R: "Regression shrinkage and selection via the lasso,". Journal of Royal Statistical Society Ser. B 1996, 58: 267–288.

3. Zou H, Hastie T: "Regularization and variable selection via the elastic net,". Journal of Royal Statistical Society Ser. B 2005, 67: 301–320. 10.1111/j.1467-9868.2005.00503.x

4. Park T, Casella G: "The Bayesian Lasso,". Journal of the American Statistical Association 2008, 103: 681–686,. 10.1198/016214508000000337

5. Cristianini N, Shawe-Taylor J: An Introduction to Support Vector Machines. Cambridge University Press; 2000.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3