Author:
Chen Bo,Chen Minhua,Paisley John,Zaas Aimee,Woods Christopher,Ginsburg Geoffrey S,Hero Alfred,Lucas Joseph,Dunson David,Carin Lawrence
Abstract
Abstract
Background
Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis.
Results
Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches.
Conclusions
Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference28 articles.
1. West M: "Bayesian factor regression models in the "large p, small n" paradigm,". In Bayesian Statistics 7. Edited by: Bernardo JM, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M. Oxford University Press; 2003:723–732.
2. Tibshirani R: "Regression shrinkage and selection via the lasso,". Journal of Royal Statistical Society Ser. B 1996, 58: 267–288.
3. Zou H, Hastie T: "Regularization and variable selection via the elastic net,". Journal of Royal Statistical Society Ser. B 2005, 67: 301–320. 10.1111/j.1467-9868.2005.00503.x
4. Park T, Casella G: "The Bayesian Lasso,". Journal of the American Statistical Association 2008, 103: 681–686,. 10.1198/016214508000000337
5. Cristianini N, Shawe-Taylor J: An Introduction to Support Vector Machines. Cambridge University Press; 2000.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献