Using tree diversity to compare phylogenetic heuristics

Author:

Sul Seung-Jin,Matthews Suzanne,Williams Tiffani L

Abstract

Abstract Background Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Results Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Conclusion Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees—especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference17 articles.

1. Bader D, Moret BM, Vawter L: Industrial Applications of High-Performance Computing for Phylogeny Reconstruction. In Proceedings of SPIE Commercial Applications for High-Performance Computing, Denver CO Edited by: Siegel H. 2001, 4528: 159–168.

2. Metzker ML, Mindell DP, Liu XM, Ptak RG, Gibbs RA, Hillis DM: Molecular evidence of HIV-1 transmission in a criminal case. PNAS 2002, 99(2):14292–14297.

3. Nixon KC: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 1999, 15: 407–414.

4. Roshan U, Moret BME, Williams TL, Warnow T: A Fast Algorithmic Techniques for Reconstructing Large Phylogenetic Trees. In Proc IEEE Computer Society Bioinformatics Conference (CSB 2004). IEEE Press; 2004:98–109.

5. Bininda-Emonds O: Parsimony Ratchet implementation for PAUP*4.0b10 using Perl.2003. [http://www.uni-oldenburg.de/molekularesystematik/download/goto.php?w=/Programs/perlRat.zip]

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3