Author:
Russ Thomas A,Ramakrishnan Cartic,Hovy Eduard H,Bota Mihail,Burns Gully APC
Abstract
Abstract
Background
We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain.
Results
The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology.
Conclusions
We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference74 articles.
1. Mons B, Velterop J: Nano-publication in the e-science era. Workshop on Semantic Web Applications in Scientific Discourse (SWASD 2009). 2009, Washington DC
2. Groth P, Gibson A, Velterop J: The anatomy of a nanopublication. Information Services & Use. 2010, 30: 51-56.
3. Swanson LW, Cowan WM: Hippocampo-hypothalamic connections: origin in subicular cortex, not ammon's horn. Science. 1975, 189 (4199): 303-4. 10.1126/science.49928. [http://www.ncbi.nlm.nih.gov/pubmed?term=49928]
4. Groza T, Handschuh S, Clark T, Shum SB, Waard AD: A short survey of discourse representation models'. Workshop on Semantic Web Applcations in Scientific Discourse (SWASD 2009). 2009, Washington DC
5. Ciccarese P, Wu E, Wong G, Ocana M, Kinoshita J, Ruttenberg A, Clark T: The SWAN biomedical discourse ontology. J Biomed Inform. 2008, 41 (5): 739-51. 10.1016/j.jbi.2008.04.010.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献