Site-specific impacts on gene expression and behavior in fathead minnows (Pimephales promelas) exposed in situ to streams adjacent to sewage treatment plants

Author:

Garcia-Reyero Natàlia,Adelman Ira R,Martinović Dalma,Liu Li,Denslow Nancy D

Abstract

Abstract Background Environmental monitoring for pharmaceuticals and endocrine disruptors in the aquatic environment traditionally employs a variety of methods including analytical chemistry, as well as a variety of histological and biochemical endpoints that correlate with the fish fitness. It is now clear that analytical chemistry alone is insufficient to identify aquatic environments that are compromised because these measurements do not identify the biologically available dose. The biological endpoints that are measured are important because they relate to known impairments; however, they are not specific to the contaminants and often focus on only a few known endpoints. These studies can be enhanced by looking more broadly at changes in gene expression, especially if the analysis focuses on biochemical pathways. The present study was designed to obtain additional information for well-characterized sites adjacent to sewage treatment plants in MN that are thought to be impacted by endocrine disruptors. Results Here we examine five sites that have been previously characterized and examine changes in gene expression in fathead minnows (Pimephales promelas) that have been caged for 48 h in each of the aquatic environments. We find that the gene expression changes are characteristic and unique at each of the five sites. Also, fish exposed to two of the sites, 7 and 12, present a more aggressive behavior compared to control fish. Conclusion Our results show that a short-term exposure to sewage treatment plant effluents was able to induce a site-specific gene expression pattern in the fathead minnow gonad and liver. The short-term exposure was also enough to affect fish sexual behavior. Our results also show that microarray analysis can be very useful at determining potential exposure to chemicals, and could be used routinely as a tool for environmental monitoring.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3