Time scale and dimension analysis of a budding yeast cell cycle model

Author:

Lovrics Anna,Csikász-Nagy Attila,Zsély István Gy,Zádor Judit,Turányi Tamás,Novák Béla

Abstract

Abstract Background The progress through the eukaryotic cell division cycle is driven by an underlying molecular regulatory network. Cell cycle progression can be considered as a series of irreversible transitions from one steady state to another in the correct order. Although this view has been put forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model for the budding yeast cell cycle has identified only two different steady states (one for G1 and one for mitosis) using cell mass as a bifurcation parameter. By analyzing the same model, using different methods of dynamical systems theory, we provide evidence for transitions among several different steady states during the budding yeast cell cycle. Results By calculating the eigenvalues of the Jacobian of kinetic differential equations we have determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady state and, accordingly, excitation periods can be associated with irreversible cell cycle transitions like START, entry into mitosis and exit from mitosis. During relaxation periods, the control system asymptotically approaches the new steady state. We also show that the dynamical dimension of the Chen's model fluctuates by increasing during excitation periods followed by decrease during relaxation periods. In each relaxation period the dynamical dimension of the model drops to one, indicating a period where kinetic processes are in steady state and all concentration changes are driven by the increase of cytoplasmic growth. Conclusion We apply two numerical methods, which have not been used to analyze biological control systems. These methods are more sensitive than the bifurcation analysis used before because they identify those transitions between steady states that are not controlled by a bifurcation parameter (e.g. cell mass). Therefore by applying these tools for a cell cycle control model, we provide a deeper understanding of the dynamical transitions in the underlying molecular network.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3