Author:
Meng Hailong,Murrelle Edward L,Li Guoya
Abstract
Abstract
Background
DNA methylation patterns have been shown to significantly correlate with different tissue types and disease states. High-throughput methylation arrays enable large-scale DNA methylation analysis to identify informative DNA methylation biomarkers. The identification of disease-specific methylation signatures is of fundamental and practical interest for risk assessment, diagnosis, and prognosis of diseases.
Results
Using published high-throughput DNA methylation data, a two-stage feature selection method was developed to select a small optimal subset of DNA methylation features to precisely classify two sample groups. With this approach, a small number of CpG sites were highly sensitive and specific in distinguishing lung cancer tissue samples from normal lung tissue samples.
Conclusion
This study shows that it is feasible to identify DNA methylation biomarkers from high-throughput DNA methylation profiles and that a small number of signature CpG sites can suffice to classify two groups of samples. The computational method we developed in the study is efficient to identify signature CpG sites from disease samples with complex methylation patterns.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献