Author:
Avihoo Assaf,Churkin Alexander,Barash Danny
Abstract
Abstract
Background
RNAexinv is an interactive java application that performs RNA sequence design, constrained to yield a specific RNA shape and physical attributes. It is an extended inverse RNA folding program with the rationale behind that the generated sequences should not only fold into a desired structure, but they should also exhibit favorable attributes such as thermodynamic stability and mutational robustness. RNAexinv considers not only the secondary structure in order to design sequences, but also the mutational robustness and the minimum free energy. The sequences that are generated may not fully conform with the given RNA secondary structure, but they will strictly conform with the RNA shape of the given secondary structure and thereby take into consideration the recommended values of thermodynamic stability and mutational robustness that are provided.
Results
The output consists of designed sequences that are generated by the proposed method. Selecting a sequence displays the secondary structure drawings of the target and the predicted fold of the sequence, including some basic information about the desired and achieved thermodynamic stability and mutational robustness. RNAexinv can be used successfully without prior experience, simply specifying an initial RNA secondary structure in dot-bracket notation and numerical values for the desired neutrality and minimum free energy. The package runs under LINUX operating system. Secondary structure predictions are performed using the Vienna RNA package.
Conclusions
RNAexinv is a user friendly tool that can be used for RNA sequence design. It is especially useful in cases where a functional stem-loop structure of a natural sequence should be strictly kept in the designed sequences but a distant motif in the rest of the structure may contain one more or less nucleotide at the expense of another, as long as the global shape is preserved. This allows the insertion of physical observables as constraints. RNAexinv is available at http://www.cs.bgu.ac.il/~RNAexinv.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference17 articles.
1. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31: 3406–3415. 10.1093/nar/gkg595
2. Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31: 3429–3431. 10.1093/nar/gkg599
3. Mathews DH, Sabina J, Zuker M, Turner D: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999, 288: 911–940. 10.1006/jmbi.1999.2700
4. Hofacker IL: The rules of the evolutionary game for RNA: a statistical characterization of the sequence to structure mapping in RNA. PhD thesis, Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria; 1994.
5. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P: Fast folding and comparison of RNA secondary structures. Monatsh Chem 1994, 125: 167–188. 10.1007/BF00818163
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献