GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins
-
Published:2006-01-17
Issue:1
Volume:7
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Durand Patrick,Labarre Laurent,Meil Alain,Divol Jean-Louis,Vandenbrouck Yves,Viari Alain,Wojcik Jérôme
Abstract
Abstract
Background
A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs.
Results
GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces.
Conclusion
GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference30 articles.
1. Durand P, Médigue C, Morgat A, Vandenbrouck Y, Viari A, Rechenmann F: Integration of data and methods for genome analysis. Curr Opin Drug Discov Devel 2003, 6: 346–52. 2. Nitschké P, Guerdoux-Jamet P, Chiapello H, Faroux G, Hénaut C, Hénaut A, Danchin A: Indigo: a World-Wide-Web review of genomes and gene functions. FEMS Microbiol Rev 1998, 22: 207–27. 10.1016/S0168-6445(98)00014-X 3. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R: IntAct: an open source molecular interaction database. Nucleic Acids Res 2004, (32 Database):D452–5. 10.1093/nar/gkh052 4. Wittig U, De Beuckelaer A: Analysis and comparison of metabolic pathway databases. Brief Bioinform 2001, 2: 126–42. 10.1093/bib/2.2.126 5. Bader GD, Hogue CWV: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4: 2. 10.1186/1471-2105-4-2
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|