DNACLUST: accurate and efficient clustering of phylogenetic marker genes

Author:

Ghodsi Mohammadreza,Liu Bo,Pop Mihai

Abstract

Abstract Background Clustering is a fundamental operation in the analysis of biological sequence data. New DNA sequencing technologies have dramatically increased the rate at which we can generate data, resulting in datasets that cannot be efficiently analyzed by traditional clustering methods. This is particularly true in the context of taxonomic profiling of microbial communities through direct sequencing of phylogenetic markers (e.g. 16S rRNA) - the domain that motivated the work described in this paper. Many analysis approaches rely on an initial clustering step aimed at identifying sequences that belong to the same operational taxonomic unit (OTU). When defining OTUs (which have no universally accepted definition), scientists must balance a trade-off between computational efficiency and biological accuracy, as accurately estimating an environment's phylogenetic composition requires computationally-intensive analyses. We propose that efficient and mathematically well defined clustering methods can benefit existing taxonomic profiling approaches in two ways: (i) the resulting clusters can be substituted for OTUs in certain applications; and (ii) the clustering effectively reduces the size of the data-sets that need to be analyzed by complex phylogenetic pipelines (e.g., only one sequence per cluster needs to be provided to downstream analyses). Results To address the challenges outlined above, we developed DNACLUST, a fast clustering tool specifically designed for clustering highly-similar DNA sequences. Given a set of sequences and a sequence similarity threshold, DNACLUST creates clusters whose radius is guaranteed not to exceed the specified threshold. Underlying DNACLUST is a greedy clustering strategy that owes its performance to novel sequence alignment and k- mer based filtering algorithms. DNACLUST can also produce multiple sequence alignments for every cluster, allowing users to manually inspect clustering results, and enabling more detailed analyses of the clustered data. Conclusions We compare DNACLUST to two popular clustering tools: CD-HIT and UCLUST. We show that DNACLUST is about an order of magnitude faster than CD-HIT and UCLUST (exact mode) and comparable in speed to UCLUST (approximate mode). The performance of DNACLUST improves as the similarity threshold is increased (tight clusters) making it well suited for rapidly removing duplicates and near-duplicates from a dataset, thereby reducing the size of the data being analyzed through more elaborate approaches.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3