Author:
Barrett Christian L,Price Nathan D,Palsson Bernhard O
Abstract
Abstract
Background
Extreme pathways (ExPas) have been shown to be valuable for studying the functions and capabilities of metabolic networks through characterization of the null space of the stoichiometric matrix (S). Singular value decomposition (SVD) of the ExPa matrix P has previously been used to characterize the metabolic regulatory problem in the human red blood cell (hRBC) from a network perspective. The calculation of ExPas is NP-hard, and for genome-scale networks the computation of ExPas has proven to be infeasible. Therefore an alternative approach is needed to reveal regulatory properties of steady state solution spaces of genome-scale stoichiometric matrices.
Results
We show that the SVD of a matrix (W) formed of random samples from the steady-state solution space of the hRBC metabolic network gives similar insights into the regulatory properties of the network as was obtained with SVD of P. This new approach has two main advantages. First, it works with a direct representation of the shape of the metabolic solution space without the confounding factor of a non-uniform distribution of the extreme pathways and second, the SVD procedure can be applied to a very large number of samples, such as will be produced from genome-scale networks.
Conclusion
These results show that we are now in a position to study the network aspects of the regulatory problem in genome-scale metabolic networks through the use of random sampling.
Contact: palsson@ucsd.edu
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献