A quantization method based on threshold optimization for microarray short time series

Author:

Di Camillo Barbara,Sanchez-Cabo Fatima,Toffolo Gianna,Nair Sreekumaran K,Trajanoski Zlatko,Cobelli Claudio

Abstract

Abstract Background Reconstructing regulatory networks from gene expression profiles is a challenging problem of functional genomics. In microarray studies the number of samples is often very limited compared to the number of genes, thus the use of discrete data may help reducing the probability of finding random associations between genes. Results A quantization method, based on a model of the experimental error and on a significance level able to compromise between false positive and false negative classifications, is presented, which can be used as a preliminary step in discrete reverse engineering methods. The method is tested on continuous synthetic data with two discrete reverse engineering methods: Reveal and Dynamic Bayesian Networks. Conclusion The quantization method, evaluated in comparison with two standard methods, 5% threshold based on experimental error and rank sorting, improves the ability of Reveal and Dynamic Bayesian Networks to identify relations among genes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference30 articles.

1. Somogyi R, Fuhrman S, Askenazi M, Wuensche A: The gene expression matrix: towards the extraction of genetic network architectures. In Proceeding of the Second World Congress of Nonlinear Analysis: 1996 Athens, Greece. Pergamon Press; 1997:1815–1824.

2. Liang S, Fuhrman S, Somogyi R: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Proceeding of Pacific Symposium on Biocomputing 1998, 3: 18–29.

3. Shmulevich I, Dougherty ER, Zhang W: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 2002, 11: 1778–1792. 90 10.1109/JPROC.2002.804686

4. Gat-Viks I, Shamir R: Chain functions and scoring functions in genetic networks. Bioinformatics 2003, 19(Suppl 1):108–117. 10.1093/bioinformatics/btg1014

5. D'haeseleer P, Wen X, Fuhrman S: Linear modelling of mRNA expression levels during CNS development and injury. Proceedings of Pacific Symposium on Biocomputing 1999, 4: 41–52.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3