A reinforced merging methodology for mapping unique peptide motifs in members of protein families

Author:

Chang Hao-Teng,Pai Tun-Wen,Fan Tan-chi,Su Bo-Han,Wu Pei-Chih,Tang Chuan-Yi,Chang Chun-Tien,Liu Shi-Hwei,Chang Margaret Dah-Tsyr

Abstract

Abstract Background Members of a protein family often have highly conserved sequences; most of these sequences carry identical biological functions and possess similar three-dimensional (3-D) structures. However, enzymes with high sequence identity may acquire differential functions other than the common catalytic ability. It is probable that each of their variable regions consists of a unique peptide motif (UPM), which selectively interacts with other cellular proteins, rendering additional biological activities. The ability to identify and localize such UPMs is paramount in recognizing the characteristic role of each member of a protein family. Results We have developed a reinforced merging algorithm (RMA) with which non-gapped UPMs were identified in a variety of query protein sequences including members of human ribonuclease A (RNaseA), epidermal growth factor receptor (EGFR), matrix metalloproteinase (MMP), and Sma-and-Mad related protein families (Smad). The UPMs generally occupy specific positions in the resolved 3-D structures, especially the loop regions on the structural surfaces. These motifs coincide with the recognition sites for antibodies, as the epitopes of four monoclonal antibodies and two polyclonal antibodies were shown to overlap with the UPMs. Most of the UPMs were found to correlate well with the potential antigenic regions predicted by PROTEAN. Furthermore, an accuracy of 70% can be achieved in terms of mapping a UPM to an epitope. Conclusion Our study provides a bioinformatic approach for searching and predicting potential epitopes and interacting motifs that distinguish different members of a protein family.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference53 articles.

1. Martinez HM: A flexible multiple sequence alignment program. Nucleic Acids Res 1988, 16: 1683–1691.

2. Sobel E, Martinez HM: A multiple sequence alignment program. Nucleic Acids Res 1986, 14: 363–374.

3. Chappey C, Danckaert A, Dessen P, Hazout S: MASH: an interactive program for multiple alignment and consensus sequence construction for biological sequences. Comput Appl Biosci 1991, 7: 195–202.

4. BLAST[http://www.ncbi.nlm.nih.gov/BLAST/]

5. CLUSTALW[http://www.ebi.ac.uk/clustalw/]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3