Author:
Ruegger Paul M,Della Vedova Gianluca,Jiang Tao,Borneman James
Abstract
Abstract
Background
Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint) to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups.
Results
Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups.
Conclusions
Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference26 articles.
1. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R: Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research. 2007, 35: e120-e120. 10.1093/nar/gkm541.
2. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R: Microbes and Health Sackler Colloquium: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2010
3. Wu GD, Lewis JD, Hoffmann C, Chen Y-Y, Knight R, Bittinger K, Hwang J, Chen J, Berkowsky R, Nessel L, Li H, Bushman FD: Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 2010, 10: 206-10.1186/1471-2180-10-206.
4. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD: Generation of Multimillion-Sequence 16S rRNA Gene Libraries from Complex Microbial Communities by Assembling Paired-End Illumina Reads. Applied and Environmental Microbiology. 2011, 77: 3846-3852. 10.1128/AEM.02772-10.
5. Muyzer G: DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology. 1999, 2: 317-322. 10.1016/S1369-5274(99)80055-1.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献