Application of Wavelet Packet Transform to detect genetic polymorphisms by the analysis of inter-Alu PCR patterns

Author:

Cardelli Maurizio,Nicoli Matteo,Bazzani Armando,Franceschi Claudio

Abstract

AbstractBackgroundThe analysis of Inter-Alu PCR patterns obtained from human genomic DNA samples is a promising technique for a simultaneous analysis of many genomic loci flanked by Alu repetitive sequences in order to detect the presence of genetic polymorphisms. Inter-Alu PCR products may be separated and analyzed by capillary electrophoresis using an automatic sequencer that generates a complex pattern of peaks. We propose an algorithmic method based on the Haar-Walsh Wavelet Packet Transformation (WPT) for an efficient detection of fingerprint-type patterns generated by PCR-based methodologies. We have tested our algorithmic approach on inter-Alu patterns obtained from the genomic DNA of three couples of monozygotic twins, expecting that the inter-Alu patterns of each twins couple will show differences due to unavoidable experimental variability. On the contrary the differences among samples of different twins are supposed to originate from genetic variability. Our goal is to automatically detect regions in the inter-Alu pattern likely associated to the presence of genetic polymorphisms.ResultsWe show that the WPT algorithm provides a reliable tool to identify sample to sample differences in complex peak patterns, reducing the possible errors and limits associated to a subjective evaluation. The redundant decomposition of the WPT algorithm allows for a procedure of best basis selection which maximizes the pattern differences at the lowest possible scale. Our analysis points out few classifying signal regions that could indicate the presence of possible genetic polymorphisms.ConclusionsThe WPT algorithm based on the Haar-Walsh wavelet is an efficient tool for a non-supervised pattern classification of inter-ALU signals provided by a genetic analyzer, even if it was not possible to estimate the power and false positive rate due to the lacking of a suitable data base. The identification of non-reproducible peaks is usually accomplished comparing different experimental replicates of each sample. Moreover, we remark that, albeit we developed and optimized an algorithm able to analyze patterns obtained through inter-Alu PCR, the method is theoretically applicable to whatever fingerprint-type pattern obtained analyzing anonymous DNA fragments through capillary electrophoresis, and it could be usefully applied on a wide range of fingerprint-type methodologies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3