Inherited disorder phenotypes: controlled annotation and statistical analysis for knowledge mining from gene lists

Author:

Masseroli Marco,Galati Osvaldo,Manzotti Mauro,Gibert Karina,Pinciroli Francesco

Abstract

Abstract Background Analysis of inherited diseases and their associated phenotypes is of great importance to gain knowledge of underlying genetic interactions and could ultimately give clinically useful insights into disease processes, including complex diseases influenced by multiple genetic loci. Nevertheless, to date few computational contributions have been proposed for this purpose, mainly due to lack of controlled clinical information easily accessible and structured for computational genome-wise analyses. To allow performing phenotype analyses of inherited disorder related genes we implemented new original modules within GFINDer http://www.bioinformatics.polimi.it/GFINDer/, a Web system we previously developed that dynamically aggregates functional annotations of user uploaded gene lists and allows performing their statistical analysis and mining. Results New GFINDer modules allow annotating large numbers of user classified biomolecular sequence identifiers with morbidity and clinical information, classifying them according to genetic disease phenotypes and their locations of occurrence, and statistically analyzing the obtained classifications. To achieve this we exploited, normalized and structured the information present in textual form in the Clinical Synopsis sections of the Online Mendelian Inheritance in Man (OMIM) databank. Such valuable information delineates numerous signs and symptoms accompanying many genetic diseases and it is divided into phenotype location categories, either by organ system or type of finding. Conclusion Supporting phenotype analyses of inherited diseases and biomolecular functional evaluations, GFINDer facilitates a genomic approach to the understanding of fundamental biological processes and complex cellular mechanisms underlying patho-physiological phenotypes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disease classification: from phenotypic similarity to integrative genomics and beyond;Briefings in Bioinformatics;2019-06-03

2. A biomedical ontology on genetic disease;Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing;2017-03-22

3. Malignancy risk models for oral lesions;Medicina Oral Patología Oral y Cirugia Bucal;2013

4. Calculating phenotypic similarity between genes using hierarchical structure data based on semantic similarity;Gene;2012-04

5. Annotating the human genome with Disease Ontology;BMC Genomics;2009-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3