Comparative study of three commonly used continuous deterministic methods for modeling gene regulation networks

Author:

Swain Martin T,Mandel Johannes J,Dubitzky Werner

Abstract

Abstract Background A gene-regulatory network (GRN) refers to DNA segments that interact through their RNA and protein products and thereby govern the rates at which genes are transcribed. Creating accurate dynamic models of GRNs is gaining importance in biomedical research and development. To improve our understanding of continuous deterministic modeling methods employed to construct dynamic GRN models, we have carried out a comprehensive comparative study of three commonly used systems of ordinary differential equations: The S-system (SS), artificial neural networks (ANNs), and the general rate law of transcription (GRLOT) method. These were thoroughly evaluated in terms of their ability to replicate the reference models' regulatory structure and dynamic gene expression behavior under varying conditions. Results While the ANN and GRLOT methods appeared to produce robust models even when the model parameters deviated considerably from those of the reference models, SS-based models exhibited a notable loss of performance even when the parameters of the reverse-engineered models corresponded closely to those of the reference models: this is due to the high number of power terms in the SS-method, and the manner in which they are combined. In cross-method reverse-engineering experiments the different characteristics, biases and idiosynchracies of the methods were revealed. Based on limited training data, with only one experimental condition, all methods produced dynamic models that were able to reproduce the training data accurately. However, an accurate reproduction of regulatory network features was only possible with training data originating from multiple experiments under varying conditions. Conclusions The studied GRN modeling methods produced dynamic GRN models exhibiting marked differences in their ability to replicate the reference models' structure and behavior. Our results suggest that care should be taking when a method is chosen for a particular application. In particular, reliance on only a single method might unduly bias the results.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3