Author:
Li Haiquan,Benedito Vagner A,Udvardi Michael K,Zhao Patrick Xuechun
Abstract
Abstract
Background
Membrane transporters play crucial roles in living cells. Experimental characterization of transporters is costly and time-consuming. Current computational methods for transporter characterization still require extensive curation efforts, especially for eukaryotic organisms. We developed a novel genome-scale transporter prediction and characterization system called TransportTP that combined homology-based and machine learning methods in a two-phase classification approach. First, traditional homology methods were employed to predict novel transporters based on sequence similarity to known classified proteins in the Transporter Classification Database (TCDB). Second, machine learning methods were used to integrate a variety of features to refine the initial predictions. A set of rules based on transporter features was developed by machine learning using well-curated proteomes as guides.
Results
In a cross-validation using the yeast proteome for training and the proteomes of ten other organisms for testing, TransportTP achieved an equivalent recall and precision of 81.8%, based on TransportDB, a manually annotated transporter database. In an independent test using the Arabidopsis proteome for training and four recently sequenced plant proteomes for testing, it achieved a recall of 74.6% and a precision of 73.4%, according to our manual curation.
Conclusions
TransportTP is the most effective tool for eukaryotic transporter characterization up to date.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference38 articles.
1. Sakmann B, Neher E: Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 1984, 46: 455–472. 10.1146/annurev.ph.46.030184.002323
2. Hsu L, Chiou T, Chen L, Bush D: Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA 1993, 90: 7441–7445. 10.1073/pnas.90.16.7441
3. Kuze K, Graves P, Leahy A, Wilson P, Stuhlmann H, You G: Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. J Biol Chem 1999, 274: 1519–1524. 10.1074/jbc.274.3.1519
4. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol 1990, 215: 403–410.
5. Saier MJ, Tran C, Barabote R: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 2006, (34 Database):D181-D186. 10.1093/nar/gkj001
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献