Author:
Thomson Karen,Amin Iftekhar,Morales Eric,Winters-Hilt Stephen
Abstract
Abstract
Background
Aptamers are nucleic acids selected for their ability to bind to molecules of interest and may provide the basis for a whole new class of medicines. If the aptamer is simply a dsDNA molecule with a ssDNA overhang (a "sticky" end) then the segment of ssDNA that complements that overhang provides a known binding target with binding strength adjustable according to length of overhang.
Results
Two bifunctional aptamers are examined using a nanopore detector. They are chosen to provide sensitive, highly modulated, blockade signals with their captured ends, while their un-captured regions are designed to have binding moieties for complementary ssDNA targets. The bifunctional aptamers are duplex DNA on their channel-captured portion, and single-stranded DNA on their portion with binding ability. For short ssDNA, the binding is merely to the complementary strand of DNA, which is what is studied here – for 5-base and 6-base overhangs.
Conclusion
A preliminary statistical analysis using hidden Markov models (HMMs) indicates a clear change in the blockade pattern upon binding by the single captured aptamer. This is also consistent with the hypothesis that significant conformational changes occur during the annealing binding event. In further work the objective is to simply extend this ssDNA portion to be a well-studied ~80 base ssDNA aptamer, joined to the same bifunctional aptamer molecular platform.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference25 articles.
1. Winters-Hilt S: The α-Hemolysin Nanopore Transduction Detector – single-molecule binding studies and immunological screening of antibodies and aptamers. BMC Bioinformatics 2007,8(Suppl 7):S9.
2. Winters-Hilt S: Nanopore detection using channel current cheminformatics. SPIE Second International Symposium on Fluctuations and Noise, 25–28 May, 2004
3. Winters-Hilt S, Akeson M: Nanopore cheminformatics. DNA and Cell Biology 2004.
4. Winters-Hilt S, Vercoutere W, DeGuzman VS, Deamer DW, Akeson M, Haussler D: Highly Accurate Classification of Watson-Crick Basepairs on Termini of Single DNA Molecules. Biophys J 2003, 84: 967–976.
5. Winters-Hilt S: Highly Accurate Real-Time Classification of Channel-Captured DNA Termini. Third International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology 2003, 355–368.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献