Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition

Author:

Chen Lei,Feng Kai-Yan,Cai Yu-Dong,Chou Kuo-Chen,Li Hai-Peng

Abstract

Abstract Background Metabolic pathway is a highly regulated network consisting of many metabolic reactions involving substrates, enzymes, and products, where substrates can be transformed into products with particular catalytic enzymes. Since experimental determination of the network of substrate-enzyme-product triad (whether the substrate can be transformed into the product with a given enzyme) is both time-consuming and expensive, it would be very useful to develop a computational approach for predicting the network of substrate-enzyme-product triads. Results A mathematical model for predicting the network of substrate-enzyme-product triads was developed. Meanwhile, a benchmark dataset was constructed that contains 744,192 substrate-enzyme-product triads, of which 14,592 are networking triads, and 729,600 are non-networking triads; i.e., the number of the negative triads was about 50 times the number of the positive triads. The molecular graph was introduced to calculate the similarity between the substrate compounds and between the product compounds, while the functional domain composition was introduced to calculate the similarity between enzyme molecules. The nearest neighbour algorithm was utilized as a prediction engine, in which a novel metric was introduced to measure the "nearness" between triads. To train and test the prediction engine, one tenth of the positive triads and one tenth of the negative triads were randomly picked from the benchmark dataset as the testing samples, while the remaining were used to train the prediction model. It was observed that the overall success rate in predicting the network for the testing samples was 98.71%, with 95.41% success rate for the 1,460 testing networking triads and 98.77% for the 72,960 testing non-networking triads. Conclusions It is quite promising and encouraged to use the molecular graph to calculate the similarity between compounds and use the functional domain composition to calculate the similarity between enzymes for studying the substrate-enzyme-product network system. The software is available upon request.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3