Author:
Chen Lei,Feng Kai-Yan,Cai Yu-Dong,Chou Kuo-Chen,Li Hai-Peng
Abstract
Abstract
Background
Metabolic pathway is a highly regulated network consisting of many metabolic reactions involving substrates, enzymes, and products, where substrates can be transformed into products with particular catalytic enzymes. Since experimental determination of the network of substrate-enzyme-product triad (whether the substrate can be transformed into the product with a given enzyme) is both time-consuming and expensive, it would be very useful to develop a computational approach for predicting the network of substrate-enzyme-product triads.
Results
A mathematical model for predicting the network of substrate-enzyme-product triads was developed. Meanwhile, a benchmark dataset was constructed that contains 744,192 substrate-enzyme-product triads, of which 14,592 are networking triads, and 729,600 are non-networking triads; i.e., the number of the negative triads was about 50 times the number of the positive triads. The molecular graph was introduced to calculate the similarity between the substrate compounds and between the product compounds, while the functional domain composition was introduced to calculate the similarity between enzyme molecules. The nearest neighbour algorithm was utilized as a prediction engine, in which a novel metric was introduced to measure the "nearness" between triads. To train and test the prediction engine, one tenth of the positive triads and one tenth of the negative triads were randomly picked from the benchmark dataset as the testing samples, while the remaining were used to train the prediction model. It was observed that the overall success rate in predicting the network for the testing samples was 98.71%, with 95.41% success rate for the 1,460 testing networking triads and 98.77% for the 72,960 testing non-networking triads.
Conclusions
It is quite promising and encouraged to use the molecular graph to calculate the similarity between compounds and use the functional domain composition to calculate the similarity between enzymes for studying the substrate-enzyme-product network system. The software is available upon request.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference60 articles.
1. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al.: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, (36 Database):D480–484.
2. Chou KC: Review: Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry 2004, 11: 2105–2134.
3. Chou KC, Cai YD, Zhong WZ: Predicting networking couples for metabolic pathways of Arabidopsis. EXCLI Journal (Experimental and Clinical Sciences International Online Journal for Advances in Science) 2006, 5: 55–65.
4. Wang JF, Yan JY, Wei DQ, Chou KC: Binding of CYP2C9 with diverse drugs and its implications for metabolic mechanism. Medicinal Chemistry 2009, 5: 263–270. 10.2174/157340609788185954
5. Chou KC, Shen HB: Recent progress in protein subcellular location prediction. Anal Biochem 2007, 370(1):1–16. 10.1016/j.ab.2007.07.006
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献